2023-06-04 04:28:07 +02:00
|
|
|
class OpenAi {
|
|
|
|
constructor() {
|
2023-08-04 23:56:27 +02:00
|
|
|
const { Configuration, OpenAIApi } = require("openai");
|
2023-06-08 06:31:35 +02:00
|
|
|
const config = new Configuration({
|
|
|
|
apiKey: process.env.OPEN_AI_KEY,
|
|
|
|
});
|
2023-06-04 04:28:07 +02:00
|
|
|
const openai = new OpenAIApi(config);
|
2023-06-08 06:31:35 +02:00
|
|
|
this.openai = openai;
|
2023-06-04 04:28:07 +02:00
|
|
|
}
|
2023-07-28 21:05:38 +02:00
|
|
|
|
2023-06-08 06:31:35 +02:00
|
|
|
isValidChatModel(modelName = "") {
|
|
|
|
const validModels = ["gpt-4", "gpt-3.5-turbo"];
|
|
|
|
return validModels.includes(modelName);
|
2023-06-04 04:28:07 +02:00
|
|
|
}
|
|
|
|
|
2023-06-08 06:31:35 +02:00
|
|
|
async isSafe(input = "") {
|
|
|
|
const { flagged = false, categories = {} } = await this.openai
|
|
|
|
.createModeration({ input })
|
2023-06-04 04:28:07 +02:00
|
|
|
.then((json) => {
|
|
|
|
const res = json.data;
|
2023-06-08 06:31:35 +02:00
|
|
|
if (!res.hasOwnProperty("results"))
|
|
|
|
throw new Error("OpenAI moderation: No results!");
|
|
|
|
if (res.results.length === 0)
|
|
|
|
throw new Error("OpenAI moderation: No results length!");
|
|
|
|
return res.results[0];
|
2023-06-27 02:54:55 +02:00
|
|
|
})
|
|
|
|
.catch((error) => {
|
|
|
|
throw new Error(
|
|
|
|
`OpenAI::CreateModeration failed with: ${error.message}`
|
|
|
|
);
|
2023-06-08 06:31:35 +02:00
|
|
|
});
|
2023-06-04 04:28:07 +02:00
|
|
|
|
|
|
|
if (!flagged) return { safe: true, reasons: [] };
|
2023-06-08 06:31:35 +02:00
|
|
|
const reasons = Object.keys(categories)
|
|
|
|
.map((category) => {
|
|
|
|
const value = categories[category];
|
|
|
|
if (value === true) {
|
|
|
|
return category.replace("/", " or ");
|
|
|
|
} else {
|
|
|
|
return null;
|
|
|
|
}
|
|
|
|
})
|
|
|
|
.filter((reason) => !!reason);
|
2023-06-04 04:28:07 +02:00
|
|
|
|
2023-06-08 06:31:35 +02:00
|
|
|
return { safe: false, reasons };
|
2023-06-04 04:28:07 +02:00
|
|
|
}
|
|
|
|
|
2023-06-15 08:12:59 +02:00
|
|
|
async sendChat(chatHistory = [], prompt, workspace = {}) {
|
2023-06-08 06:31:35 +02:00
|
|
|
const model = process.env.OPEN_MODEL_PREF;
|
|
|
|
if (!this.isValidChatModel(model))
|
|
|
|
throw new Error(
|
|
|
|
`OpenAI chat: ${model} is not valid for chat completion!`
|
|
|
|
);
|
2023-06-04 04:28:07 +02:00
|
|
|
|
2023-06-08 06:31:35 +02:00
|
|
|
const textResponse = await this.openai
|
|
|
|
.createChatCompletion({
|
|
|
|
model,
|
2023-06-15 08:12:59 +02:00
|
|
|
temperature: Number(workspace?.openAiTemp ?? 0.7),
|
2023-06-08 06:31:35 +02:00
|
|
|
n: 1,
|
|
|
|
messages: [
|
|
|
|
{ role: "system", content: "" },
|
|
|
|
...chatHistory,
|
|
|
|
{ role: "user", content: prompt },
|
|
|
|
],
|
2023-06-04 04:28:07 +02:00
|
|
|
})
|
2023-06-08 06:31:35 +02:00
|
|
|
.then((json) => {
|
|
|
|
const res = json.data;
|
|
|
|
if (!res.hasOwnProperty("choices"))
|
|
|
|
throw new Error("OpenAI chat: No results!");
|
|
|
|
if (res.choices.length === 0)
|
|
|
|
throw new Error("OpenAI chat: No results length!");
|
|
|
|
return res.choices[0].message.content;
|
2023-06-27 02:54:55 +02:00
|
|
|
})
|
|
|
|
.catch((error) => {
|
|
|
|
console.log(error);
|
|
|
|
throw new Error(
|
|
|
|
`OpenAI::createChatCompletion failed with: ${error.message}`
|
|
|
|
);
|
2023-06-08 06:31:35 +02:00
|
|
|
});
|
2023-06-04 04:28:07 +02:00
|
|
|
|
2023-06-08 06:31:35 +02:00
|
|
|
return textResponse;
|
2023-06-04 04:28:07 +02:00
|
|
|
}
|
2023-07-28 21:05:38 +02:00
|
|
|
|
|
|
|
async getChatCompletion(messages = [], { temperature = 0.7 }) {
|
|
|
|
const model = process.env.OPEN_MODEL_PREF || "gpt-3.5-turbo";
|
|
|
|
const { data } = await this.openai.createChatCompletion({
|
|
|
|
model,
|
|
|
|
messages,
|
|
|
|
temperature,
|
|
|
|
});
|
|
|
|
|
|
|
|
if (!data.hasOwnProperty("choices")) return null;
|
|
|
|
return data.choices[0].message.content;
|
|
|
|
}
|
|
|
|
|
|
|
|
async embedTextInput(textInput) {
|
|
|
|
const result = await this.embedChunks(textInput);
|
|
|
|
return result?.[0] || [];
|
|
|
|
}
|
|
|
|
|
|
|
|
async embedChunks(textChunks = []) {
|
|
|
|
const {
|
|
|
|
data: { data },
|
|
|
|
} = await this.openai.createEmbedding({
|
|
|
|
model: "text-embedding-ada-002",
|
|
|
|
input: textChunks,
|
|
|
|
});
|
|
|
|
|
|
|
|
return data.length > 0 &&
|
|
|
|
data.every((embd) => embd.hasOwnProperty("embedding"))
|
|
|
|
? data.map((embd) => embd.embedding)
|
|
|
|
: null;
|
|
|
|
}
|
2023-06-04 04:28:07 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
module.exports = {
|
|
|
|
OpenAi,
|
|
|
|
};
|