2024-05-17 02:25:05 +02:00
|
|
|
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
|
2024-04-30 21:33:42 +02:00
|
|
|
const {
|
|
|
|
handleDefaultStreamResponseV2,
|
|
|
|
} = require("../../helpers/chat/responses");
|
2023-11-09 21:33:21 +01:00
|
|
|
|
|
|
|
// hybrid of openAi LLM chat completion for LMStudio
|
|
|
|
class LMStudioLLM {
|
2024-01-17 21:59:25 +01:00
|
|
|
constructor(embedder = null, _modelPreference = null) {
|
2023-11-09 21:33:21 +01:00
|
|
|
if (!process.env.LMSTUDIO_BASE_PATH)
|
|
|
|
throw new Error("No LMStudio API Base Path was set.");
|
|
|
|
|
2024-04-30 21:33:42 +02:00
|
|
|
const { OpenAI: OpenAIApi } = require("openai");
|
|
|
|
this.lmstudio = new OpenAIApi({
|
|
|
|
baseURL: process.env.LMSTUDIO_BASE_PATH?.replace(/\/+$/, ""), // here is the URL to your LMStudio instance
|
|
|
|
apiKey: null,
|
2023-11-09 21:33:21 +01:00
|
|
|
});
|
2024-03-22 22:39:30 +01:00
|
|
|
|
|
|
|
// Prior to LMStudio 0.2.17 the `model` param was not required and you could pass anything
|
|
|
|
// into that field and it would work. On 0.2.17 LMStudio introduced multi-model chat
|
|
|
|
// which now has a bug that reports the server model id as "Loaded from Chat UI"
|
|
|
|
// and any other value will crash inferencing. So until this is patched we will
|
|
|
|
// try to fetch the `/models` and have the user set it, or just fallback to "Loaded from Chat UI"
|
|
|
|
// which will not impact users with <v0.2.17 and should work as well once the bug is fixed.
|
|
|
|
this.model = process.env.LMSTUDIO_MODEL_PREF || "Loaded from Chat UI";
|
2023-11-09 21:33:21 +01:00
|
|
|
this.limits = {
|
|
|
|
history: this.promptWindowLimit() * 0.15,
|
|
|
|
system: this.promptWindowLimit() * 0.15,
|
|
|
|
user: this.promptWindowLimit() * 0.7,
|
|
|
|
};
|
|
|
|
|
2024-05-17 02:25:05 +02:00
|
|
|
this.embedder = embedder ?? new NativeEmbedder();
|
2024-01-17 23:42:05 +01:00
|
|
|
this.defaultTemp = 0.7;
|
2023-11-09 21:33:21 +01:00
|
|
|
}
|
|
|
|
|
2023-12-28 23:42:34 +01:00
|
|
|
#appendContext(contextTexts = []) {
|
|
|
|
if (!contextTexts || !contextTexts.length) return "";
|
|
|
|
return (
|
|
|
|
"\nContext:\n" +
|
|
|
|
contextTexts
|
|
|
|
.map((text, i) => {
|
|
|
|
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
|
|
|
|
})
|
|
|
|
.join("")
|
|
|
|
);
|
|
|
|
}
|
|
|
|
|
2023-11-14 00:07:30 +01:00
|
|
|
streamingEnabled() {
|
2024-05-02 01:52:28 +02:00
|
|
|
return "streamGetChatCompletion" in this;
|
2023-11-14 00:07:30 +01:00
|
|
|
}
|
|
|
|
|
2024-08-15 21:13:28 +02:00
|
|
|
static promptWindowLimit(_modelName) {
|
|
|
|
const limit = process.env.LMSTUDIO_MODEL_TOKEN_LIMIT || 4096;
|
|
|
|
if (!limit || isNaN(Number(limit)))
|
|
|
|
throw new Error("No LMStudio token context limit was set.");
|
|
|
|
return Number(limit);
|
|
|
|
}
|
|
|
|
|
2023-11-09 21:33:21 +01:00
|
|
|
// Ensure the user set a value for the token limit
|
|
|
|
// and if undefined - assume 4096 window.
|
|
|
|
promptWindowLimit() {
|
|
|
|
const limit = process.env.LMSTUDIO_MODEL_TOKEN_LIMIT || 4096;
|
|
|
|
if (!limit || isNaN(Number(limit)))
|
|
|
|
throw new Error("No LMStudio token context limit was set.");
|
|
|
|
return Number(limit);
|
|
|
|
}
|
|
|
|
|
|
|
|
async isValidChatCompletionModel(_ = "") {
|
|
|
|
// LMStudio may be anything. The user must do it correctly.
|
|
|
|
// See comment about this.model declaration in constructor
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2024-07-31 19:47:49 +02:00
|
|
|
/**
|
|
|
|
* Generates appropriate content array for a message + attachments.
|
|
|
|
* @param {{userPrompt:string, attachments: import("../../helpers").Attachment[]}}
|
|
|
|
* @returns {string|object[]}
|
|
|
|
*/
|
|
|
|
#generateContent({ userPrompt, attachments = [] }) {
|
|
|
|
if (!attachments.length) {
|
|
|
|
return userPrompt;
|
|
|
|
}
|
|
|
|
|
|
|
|
const content = [{ type: "text", text: userPrompt }];
|
|
|
|
for (let attachment of attachments) {
|
|
|
|
content.push({
|
|
|
|
type: "image_url",
|
|
|
|
image_url: {
|
|
|
|
url: attachment.contentString,
|
|
|
|
detail: "auto",
|
|
|
|
},
|
|
|
|
});
|
|
|
|
}
|
|
|
|
return content.flat();
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Construct the user prompt for this model.
|
|
|
|
* @param {{attachments: import("../../helpers").Attachment[]}} param0
|
|
|
|
* @returns
|
|
|
|
*/
|
2023-11-09 21:33:21 +01:00
|
|
|
constructPrompt({
|
|
|
|
systemPrompt = "",
|
|
|
|
contextTexts = [],
|
|
|
|
chatHistory = [],
|
|
|
|
userPrompt = "",
|
2024-07-31 19:47:49 +02:00
|
|
|
attachments = [],
|
2023-11-09 21:33:21 +01:00
|
|
|
}) {
|
|
|
|
const prompt = {
|
|
|
|
role: "system",
|
2023-12-28 23:42:34 +01:00
|
|
|
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
|
2023-11-09 21:33:21 +01:00
|
|
|
};
|
2024-07-31 19:47:49 +02:00
|
|
|
return [
|
|
|
|
prompt,
|
|
|
|
...chatHistory,
|
|
|
|
{
|
|
|
|
role: "user",
|
|
|
|
content: this.#generateContent({ userPrompt, attachments }),
|
|
|
|
},
|
|
|
|
];
|
2023-11-09 21:33:21 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
async getChatCompletion(messages = null, { temperature = 0.7 }) {
|
|
|
|
if (!this.model)
|
|
|
|
throw new Error(
|
|
|
|
`LMStudio chat: ${this.model} is not valid or defined model for chat completion!`
|
|
|
|
);
|
|
|
|
|
2024-04-30 21:33:42 +02:00
|
|
|
const result = await this.lmstudio.chat.completions.create({
|
2023-11-09 21:33:21 +01:00
|
|
|
model: this.model,
|
|
|
|
messages,
|
|
|
|
temperature,
|
|
|
|
});
|
|
|
|
|
2024-04-30 21:33:42 +02:00
|
|
|
if (!result.hasOwnProperty("choices") || result.choices.length === 0)
|
|
|
|
return null;
|
|
|
|
return result.choices[0].message.content;
|
2023-11-09 21:33:21 +01:00
|
|
|
}
|
|
|
|
|
2023-11-14 00:07:30 +01:00
|
|
|
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
|
|
|
|
if (!this.model)
|
|
|
|
throw new Error(
|
|
|
|
`LMStudio chat: ${this.model} is not valid or defined model for chat completion!`
|
|
|
|
);
|
|
|
|
|
2024-04-30 21:33:42 +02:00
|
|
|
const streamRequest = await this.lmstudio.chat.completions.create({
|
|
|
|
model: this.model,
|
|
|
|
stream: true,
|
|
|
|
messages,
|
|
|
|
temperature,
|
|
|
|
});
|
2023-11-14 00:07:30 +01:00
|
|
|
return streamRequest;
|
|
|
|
}
|
|
|
|
|
2024-02-07 17:15:14 +01:00
|
|
|
handleStream(response, stream, responseProps) {
|
2024-04-30 21:33:42 +02:00
|
|
|
return handleDefaultStreamResponseV2(response, stream, responseProps);
|
2024-02-07 17:15:14 +01:00
|
|
|
}
|
|
|
|
|
2023-11-09 21:33:21 +01:00
|
|
|
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
|
|
|
|
async embedTextInput(textInput) {
|
|
|
|
return await this.embedder.embedTextInput(textInput);
|
|
|
|
}
|
|
|
|
async embedChunks(textChunks = []) {
|
|
|
|
return await this.embedder.embedChunks(textChunks);
|
|
|
|
}
|
|
|
|
|
|
|
|
async compressMessages(promptArgs = {}, rawHistory = []) {
|
|
|
|
const { messageArrayCompressor } = require("../../helpers/chat");
|
|
|
|
const messageArray = this.constructPrompt(promptArgs);
|
|
|
|
return await messageArrayCompressor(this, messageArray, rawHistory);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
module.exports = {
|
|
|
|
LMStudioLLM,
|
|
|
|
};
|