2023-11-14 21:31:44 +01:00
|
|
|
const { chatPrompt } = require("../../chats");
|
|
|
|
|
|
|
|
class LocalAiLLM {
|
2024-01-17 21:59:25 +01:00
|
|
|
constructor(embedder = null, modelPreference = null) {
|
2023-11-14 21:31:44 +01:00
|
|
|
if (!process.env.LOCAL_AI_BASE_PATH)
|
|
|
|
throw new Error("No LocalAI Base Path was set.");
|
|
|
|
|
|
|
|
const { Configuration, OpenAIApi } = require("openai");
|
|
|
|
const config = new Configuration({
|
|
|
|
basePath: process.env.LOCAL_AI_BASE_PATH,
|
2023-12-04 17:38:15 +01:00
|
|
|
...(!!process.env.LOCAL_AI_API_KEY
|
|
|
|
? {
|
|
|
|
apiKey: process.env.LOCAL_AI_API_KEY,
|
|
|
|
}
|
|
|
|
: {}),
|
2023-11-14 21:31:44 +01:00
|
|
|
});
|
|
|
|
this.openai = new OpenAIApi(config);
|
2024-01-17 21:59:25 +01:00
|
|
|
this.model = modelPreference || process.env.LOCAL_AI_MODEL_PREF;
|
2023-11-14 21:31:44 +01:00
|
|
|
this.limits = {
|
|
|
|
history: this.promptWindowLimit() * 0.15,
|
|
|
|
system: this.promptWindowLimit() * 0.15,
|
|
|
|
user: this.promptWindowLimit() * 0.7,
|
|
|
|
};
|
|
|
|
|
|
|
|
if (!embedder)
|
|
|
|
throw new Error(
|
|
|
|
"INVALID LOCAL AI SETUP. No embedding engine has been set. Go to instance settings and set up an embedding interface to use LocalAI as your LLM."
|
|
|
|
);
|
|
|
|
this.embedder = embedder;
|
2024-01-17 23:42:05 +01:00
|
|
|
this.defaultTemp = 0.7;
|
2023-11-14 21:31:44 +01:00
|
|
|
}
|
|
|
|
|
2023-12-28 23:42:34 +01:00
|
|
|
#appendContext(contextTexts = []) {
|
|
|
|
if (!contextTexts || !contextTexts.length) return "";
|
|
|
|
return (
|
|
|
|
"\nContext:\n" +
|
|
|
|
contextTexts
|
|
|
|
.map((text, i) => {
|
|
|
|
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
|
|
|
|
})
|
|
|
|
.join("")
|
|
|
|
);
|
|
|
|
}
|
|
|
|
|
2023-11-14 21:31:44 +01:00
|
|
|
streamingEnabled() {
|
|
|
|
return "streamChat" in this && "streamGetChatCompletion" in this;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Ensure the user set a value for the token limit
|
|
|
|
// and if undefined - assume 4096 window.
|
|
|
|
promptWindowLimit() {
|
|
|
|
const limit = process.env.LOCAL_AI_MODEL_TOKEN_LIMIT || 4096;
|
|
|
|
if (!limit || isNaN(Number(limit)))
|
|
|
|
throw new Error("No LocalAi token context limit was set.");
|
|
|
|
return Number(limit);
|
|
|
|
}
|
|
|
|
|
|
|
|
async isValidChatCompletionModel(_ = "") {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
constructPrompt({
|
|
|
|
systemPrompt = "",
|
|
|
|
contextTexts = [],
|
|
|
|
chatHistory = [],
|
|
|
|
userPrompt = "",
|
|
|
|
}) {
|
|
|
|
const prompt = {
|
|
|
|
role: "system",
|
2023-12-28 23:42:34 +01:00
|
|
|
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
|
2023-11-14 21:31:44 +01:00
|
|
|
};
|
|
|
|
return [prompt, ...chatHistory, { role: "user", content: userPrompt }];
|
|
|
|
}
|
|
|
|
|
|
|
|
async isSafe(_input = "") {
|
|
|
|
// Not implemented so must be stubbed
|
|
|
|
return { safe: true, reasons: [] };
|
|
|
|
}
|
|
|
|
|
|
|
|
async sendChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
|
|
|
|
if (!(await this.isValidChatCompletionModel(this.model)))
|
|
|
|
throw new Error(
|
|
|
|
`LocalAI chat: ${this.model} is not valid for chat completion!`
|
|
|
|
);
|
|
|
|
|
|
|
|
const textResponse = await this.openai
|
|
|
|
.createChatCompletion({
|
|
|
|
model: this.model,
|
2024-01-17 23:42:05 +01:00
|
|
|
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
|
2023-11-14 21:31:44 +01:00
|
|
|
n: 1,
|
|
|
|
messages: await this.compressMessages(
|
|
|
|
{
|
|
|
|
systemPrompt: chatPrompt(workspace),
|
|
|
|
userPrompt: prompt,
|
|
|
|
chatHistory,
|
|
|
|
},
|
|
|
|
rawHistory
|
|
|
|
),
|
|
|
|
})
|
|
|
|
.then((json) => {
|
|
|
|
const res = json.data;
|
|
|
|
if (!res.hasOwnProperty("choices"))
|
|
|
|
throw new Error("LocalAI chat: No results!");
|
|
|
|
if (res.choices.length === 0)
|
|
|
|
throw new Error("LocalAI chat: No results length!");
|
|
|
|
return res.choices[0].message.content;
|
|
|
|
})
|
|
|
|
.catch((error) => {
|
|
|
|
throw new Error(
|
|
|
|
`LocalAI::createChatCompletion failed with: ${error.message}`
|
|
|
|
);
|
|
|
|
});
|
|
|
|
|
|
|
|
return textResponse;
|
|
|
|
}
|
|
|
|
|
|
|
|
async streamChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
|
|
|
|
if (!(await this.isValidChatCompletionModel(this.model)))
|
|
|
|
throw new Error(
|
|
|
|
`LocalAI chat: ${this.model} is not valid for chat completion!`
|
|
|
|
);
|
|
|
|
|
|
|
|
const streamRequest = await this.openai.createChatCompletion(
|
|
|
|
{
|
|
|
|
model: this.model,
|
|
|
|
stream: true,
|
2024-01-17 23:42:05 +01:00
|
|
|
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
|
2023-11-14 21:31:44 +01:00
|
|
|
n: 1,
|
|
|
|
messages: await this.compressMessages(
|
|
|
|
{
|
|
|
|
systemPrompt: chatPrompt(workspace),
|
|
|
|
userPrompt: prompt,
|
|
|
|
chatHistory,
|
|
|
|
},
|
|
|
|
rawHistory
|
|
|
|
),
|
|
|
|
},
|
|
|
|
{ responseType: "stream" }
|
|
|
|
);
|
|
|
|
return streamRequest;
|
|
|
|
}
|
|
|
|
|
|
|
|
async getChatCompletion(messages = null, { temperature = 0.7 }) {
|
|
|
|
if (!(await this.isValidChatCompletionModel(this.model)))
|
|
|
|
throw new Error(
|
|
|
|
`LocalAI chat: ${this.model} is not valid for chat completion!`
|
|
|
|
);
|
|
|
|
|
|
|
|
const { data } = await this.openai.createChatCompletion({
|
|
|
|
model: this.model,
|
|
|
|
messages,
|
|
|
|
temperature,
|
|
|
|
});
|
|
|
|
|
|
|
|
if (!data.hasOwnProperty("choices")) return null;
|
|
|
|
return data.choices[0].message.content;
|
|
|
|
}
|
|
|
|
|
|
|
|
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
|
|
|
|
if (!(await this.isValidChatCompletionModel(this.model)))
|
|
|
|
throw new Error(
|
|
|
|
`LocalAi chat: ${this.model} is not valid for chat completion!`
|
|
|
|
);
|
|
|
|
|
|
|
|
const streamRequest = await this.openai.createChatCompletion(
|
|
|
|
{
|
|
|
|
model: this.model,
|
|
|
|
stream: true,
|
|
|
|
messages,
|
|
|
|
temperature,
|
|
|
|
},
|
|
|
|
{ responseType: "stream" }
|
|
|
|
);
|
|
|
|
return streamRequest;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
|
|
|
|
async embedTextInput(textInput) {
|
|
|
|
return await this.embedder.embedTextInput(textInput);
|
|
|
|
}
|
|
|
|
async embedChunks(textChunks = []) {
|
|
|
|
return await this.embedder.embedChunks(textChunks);
|
|
|
|
}
|
|
|
|
|
|
|
|
async compressMessages(promptArgs = {}, rawHistory = []) {
|
|
|
|
const { messageArrayCompressor } = require("../../helpers/chat");
|
|
|
|
const messageArray = this.constructPrompt(promptArgs);
|
|
|
|
return await messageArrayCompressor(this, messageArray, rawHistory);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
module.exports = {
|
|
|
|
LocalAiLLM,
|
|
|
|
};
|