mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-05 22:40:12 +01:00
6d5968bf7e
* move internal functions to private in class simplify lc message convertor * Fix hanging Context text when none is present
235 lines
6.5 KiB
JavaScript
235 lines
6.5 KiB
JavaScript
const { OpenAiEmbedder } = require("../../EmbeddingEngines/openAi");
|
|
const { chatPrompt } = require("../../chats");
|
|
|
|
class OpenAiLLM {
|
|
constructor(embedder = null) {
|
|
const { Configuration, OpenAIApi } = require("openai");
|
|
if (!process.env.OPEN_AI_KEY) throw new Error("No OpenAI API key was set.");
|
|
|
|
const config = new Configuration({
|
|
apiKey: process.env.OPEN_AI_KEY,
|
|
});
|
|
this.openai = new OpenAIApi(config);
|
|
this.model = process.env.OPEN_MODEL_PREF || "gpt-3.5-turbo";
|
|
this.limits = {
|
|
history: this.promptWindowLimit() * 0.15,
|
|
system: this.promptWindowLimit() * 0.15,
|
|
user: this.promptWindowLimit() * 0.7,
|
|
};
|
|
|
|
if (!embedder)
|
|
console.warn(
|
|
"No embedding provider defined for OpenAiLLM - falling back to OpenAiEmbedder for embedding!"
|
|
);
|
|
this.embedder = !embedder ? new OpenAiEmbedder() : embedder;
|
|
}
|
|
|
|
#appendContext(contextTexts = []) {
|
|
if (!contextTexts || !contextTexts.length) return "";
|
|
return (
|
|
"\nContext:\n" +
|
|
contextTexts
|
|
.map((text, i) => {
|
|
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
|
|
})
|
|
.join("")
|
|
);
|
|
}
|
|
|
|
streamingEnabled() {
|
|
return "streamChat" in this && "streamGetChatCompletion" in this;
|
|
}
|
|
|
|
promptWindowLimit() {
|
|
switch (this.model) {
|
|
case "gpt-3.5-turbo":
|
|
return 4096;
|
|
case "gpt-4":
|
|
return 8192;
|
|
case "gpt-4-1106-preview":
|
|
return 128000;
|
|
case "gpt-4-32k":
|
|
return 32000;
|
|
default:
|
|
return 4096; // assume a fine-tune 3.5
|
|
}
|
|
}
|
|
|
|
async isValidChatCompletionModel(modelName = "") {
|
|
const validModels = [
|
|
"gpt-4",
|
|
"gpt-3.5-turbo",
|
|
"gpt-4-1106-preview",
|
|
"gpt-4-32k",
|
|
];
|
|
const isPreset = validModels.some((model) => modelName === model);
|
|
if (isPreset) return true;
|
|
|
|
const model = await this.openai
|
|
.retrieveModel(modelName)
|
|
.then((res) => res.data)
|
|
.catch(() => null);
|
|
return !!model;
|
|
}
|
|
|
|
constructPrompt({
|
|
systemPrompt = "",
|
|
contextTexts = [],
|
|
chatHistory = [],
|
|
userPrompt = "",
|
|
}) {
|
|
const prompt = {
|
|
role: "system",
|
|
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
|
|
};
|
|
return [prompt, ...chatHistory, { role: "user", content: userPrompt }];
|
|
}
|
|
|
|
async isSafe(input = "") {
|
|
const { flagged = false, categories = {} } = await this.openai
|
|
.createModeration({ input })
|
|
.then((json) => {
|
|
const res = json.data;
|
|
if (!res.hasOwnProperty("results"))
|
|
throw new Error("OpenAI moderation: No results!");
|
|
if (res.results.length === 0)
|
|
throw new Error("OpenAI moderation: No results length!");
|
|
return res.results[0];
|
|
})
|
|
.catch((error) => {
|
|
throw new Error(
|
|
`OpenAI::CreateModeration failed with: ${error.message}`
|
|
);
|
|
});
|
|
|
|
if (!flagged) return { safe: true, reasons: [] };
|
|
const reasons = Object.keys(categories)
|
|
.map((category) => {
|
|
const value = categories[category];
|
|
if (value === true) {
|
|
return category.replace("/", " or ");
|
|
} else {
|
|
return null;
|
|
}
|
|
})
|
|
.filter((reason) => !!reason);
|
|
|
|
return { safe: false, reasons };
|
|
}
|
|
|
|
async sendChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
|
|
if (!(await this.isValidChatCompletionModel(this.model)))
|
|
throw new Error(
|
|
`OpenAI chat: ${this.model} is not valid for chat completion!`
|
|
);
|
|
|
|
const textResponse = await this.openai
|
|
.createChatCompletion({
|
|
model: this.model,
|
|
temperature: Number(workspace?.openAiTemp ?? 0.7),
|
|
n: 1,
|
|
messages: await this.compressMessages(
|
|
{
|
|
systemPrompt: chatPrompt(workspace),
|
|
userPrompt: prompt,
|
|
chatHistory,
|
|
},
|
|
rawHistory
|
|
),
|
|
})
|
|
.then((json) => {
|
|
const res = json.data;
|
|
if (!res.hasOwnProperty("choices"))
|
|
throw new Error("OpenAI chat: No results!");
|
|
if (res.choices.length === 0)
|
|
throw new Error("OpenAI chat: No results length!");
|
|
return res.choices[0].message.content;
|
|
})
|
|
.catch((error) => {
|
|
throw new Error(
|
|
`OpenAI::createChatCompletion failed with: ${error.message}`
|
|
);
|
|
});
|
|
|
|
return textResponse;
|
|
}
|
|
|
|
async streamChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
|
|
if (!(await this.isValidChatCompletionModel(this.model)))
|
|
throw new Error(
|
|
`OpenAI chat: ${this.model} is not valid for chat completion!`
|
|
);
|
|
|
|
const streamRequest = await this.openai.createChatCompletion(
|
|
{
|
|
model: this.model,
|
|
stream: true,
|
|
temperature: Number(workspace?.openAiTemp ?? 0.7),
|
|
n: 1,
|
|
messages: await this.compressMessages(
|
|
{
|
|
systemPrompt: chatPrompt(workspace),
|
|
userPrompt: prompt,
|
|
chatHistory,
|
|
},
|
|
rawHistory
|
|
),
|
|
},
|
|
{ responseType: "stream" }
|
|
);
|
|
return streamRequest;
|
|
}
|
|
|
|
async getChatCompletion(messages = null, { temperature = 0.7 }) {
|
|
if (!(await this.isValidChatCompletionModel(this.model)))
|
|
throw new Error(
|
|
`OpenAI chat: ${this.model} is not valid for chat completion!`
|
|
);
|
|
|
|
const { data } = await this.openai.createChatCompletion({
|
|
model: this.model,
|
|
messages,
|
|
temperature,
|
|
});
|
|
|
|
if (!data.hasOwnProperty("choices")) return null;
|
|
return data.choices[0].message.content;
|
|
}
|
|
|
|
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
|
|
if (!(await this.isValidChatCompletionModel(this.model)))
|
|
throw new Error(
|
|
`OpenAI chat: ${this.model} is not valid for chat completion!`
|
|
);
|
|
|
|
const streamRequest = await this.openai.createChatCompletion(
|
|
{
|
|
model: this.model,
|
|
stream: true,
|
|
messages,
|
|
temperature,
|
|
},
|
|
{ responseType: "stream" }
|
|
);
|
|
return streamRequest;
|
|
}
|
|
|
|
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
|
|
async embedTextInput(textInput) {
|
|
return await this.embedder.embedTextInput(textInput);
|
|
}
|
|
async embedChunks(textChunks = []) {
|
|
return await this.embedder.embedChunks(textChunks);
|
|
}
|
|
|
|
async compressMessages(promptArgs = {}, rawHistory = []) {
|
|
const { messageArrayCompressor } = require("../../helpers/chat");
|
|
const messageArray = this.constructPrompt(promptArgs);
|
|
return await messageArrayCompressor(this, messageArray, rawHistory);
|
|
}
|
|
}
|
|
|
|
module.exports = {
|
|
OpenAiLLM,
|
|
};
|