anything-llm/server/utils/AiProviders/gemini/index.js

287 lines
8.7 KiB
JavaScript
Raw Normal View History

const { chatPrompt } = require("../../chats");
const {
writeResponseChunk,
clientAbortedHandler,
} = require("../../helpers/chat/responses");
class GeminiLLM {
constructor(embedder = null, modelPreference = null) {
if (!process.env.GEMINI_API_KEY)
throw new Error("No Gemini API key was set.");
// Docs: https://ai.google.dev/tutorials/node_quickstart
const { GoogleGenerativeAI } = require("@google/generative-ai");
const genAI = new GoogleGenerativeAI(process.env.GEMINI_API_KEY);
this.model =
modelPreference || process.env.GEMINI_LLM_MODEL_PREF || "gemini-pro";
this.gemini = genAI.getGenerativeModel(
{ model: this.model },
{
// Gemini-1.5-pro is only available on the v1beta API.
apiVersion: this.model === "gemini-1.5-pro-latest" ? "v1beta" : "v1",
}
);
this.limits = {
history: this.promptWindowLimit() * 0.15,
system: this.promptWindowLimit() * 0.15,
user: this.promptWindowLimit() * 0.7,
};
if (!embedder)
throw new Error(
"INVALID GEMINI LLM SETUP. No embedding engine has been set. Go to instance settings and set up an embedding interface to use Gemini as your LLM."
);
this.embedder = embedder;
this.defaultTemp = 0.7; // not used for Gemini
}
#appendContext(contextTexts = []) {
if (!contextTexts || !contextTexts.length) return "";
return (
"\nContext:\n" +
contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")
);
}
streamingEnabled() {
return "streamChat" in this && "streamGetChatCompletion" in this;
}
promptWindowLimit() {
switch (this.model) {
case "gemini-pro":
return 30_720;
case "gemini-1.5-pro-latest":
return 1_048_576;
default:
return 30_720; // assume a gemini-pro model
}
}
isValidChatCompletionModel(modelName = "") {
const validModels = ["gemini-pro", "gemini-1.5-pro-latest"];
return validModels.includes(modelName);
}
// Moderation cannot be done with Gemini.
// Not implemented so must be stubbed
async isSafe(_input = "") {
return { safe: true, reasons: [] };
}
constructPrompt({
systemPrompt = "",
contextTexts = [],
chatHistory = [],
userPrompt = "",
}) {
const prompt = {
role: "system",
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
};
return [
prompt,
{ role: "assistant", content: "Okay." },
...chatHistory,
{ role: "USER_PROMPT", content: userPrompt },
];
}
// This will take an OpenAi format message array and only pluck valid roles from it.
formatMessages(messages = []) {
// Gemini roles are either user || model.
// and all "content" is relabeled to "parts"
2024-03-27 01:20:12 +01:00
const allMessages = messages
.map((message) => {
if (message.role === "system")
return { role: "user", parts: [{ text: message.content }] };
if (message.role === "user")
return { role: "user", parts: [{ text: message.content }] };
if (message.role === "assistant")
return { role: "model", parts: [{ text: message.content }] };
return null;
})
.filter((msg) => !!msg);
2024-03-27 01:20:12 +01:00
// Specifically, Google cannot have the last sent message be from a user with no assistant reply
// otherwise it will crash. So if the last item is from the user, it was not completed so pop it off
// the history.
if (
allMessages.length > 0 &&
allMessages[allMessages.length - 1].role === "user"
)
allMessages.pop();
return allMessages;
}
async sendChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
if (!this.isValidChatCompletionModel(this.model))
throw new Error(
`Gemini chat: ${this.model} is not valid for chat completion!`
);
const compressedHistory = await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
chatHistory,
},
rawHistory
);
const chatThread = this.gemini.startChat({
history: this.formatMessages(compressedHistory),
});
const result = await chatThread.sendMessage(prompt);
const response = result.response;
const responseText = response.text();
if (!responseText) throw new Error("Gemini: No response could be parsed.");
return responseText;
}
async getChatCompletion(messages = [], _opts = {}) {
if (!this.isValidChatCompletionModel(this.model))
throw new Error(
`Gemini chat: ${this.model} is not valid for chat completion!`
);
const prompt = messages.find(
(chat) => chat.role === "USER_PROMPT"
)?.content;
const chatThread = this.gemini.startChat({
history: this.formatMessages(messages),
});
const result = await chatThread.sendMessage(prompt);
const response = result.response;
const responseText = response.text();
if (!responseText) throw new Error("Gemini: No response could be parsed.");
return responseText;
}
async streamChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
if (!this.isValidChatCompletionModel(this.model))
throw new Error(
`Gemini chat: ${this.model} is not valid for chat completion!`
);
const compressedHistory = await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
chatHistory,
},
rawHistory
);
const chatThread = this.gemini.startChat({
history: this.formatMessages(compressedHistory),
});
const responseStream = await chatThread.sendMessageStream(prompt);
if (!responseStream.stream)
throw new Error("Could not stream response stream from Gemini.");
return responseStream.stream;
}
async streamGetChatCompletion(messages = [], _opts = {}) {
if (!this.isValidChatCompletionModel(this.model))
throw new Error(
`Gemini chat: ${this.model} is not valid for chat completion!`
);
const prompt = messages.find(
(chat) => chat.role === "USER_PROMPT"
)?.content;
const chatThread = this.gemini.startChat({
history: this.formatMessages(messages),
});
const responseStream = await chatThread.sendMessageStream(prompt);
if (!responseStream.stream)
throw new Error("Could not stream response stream from Gemini.");
return responseStream.stream;
}
async compressMessages(promptArgs = {}, rawHistory = []) {
const { messageArrayCompressor } = require("../../helpers/chat");
const messageArray = this.constructPrompt(promptArgs);
return await messageArrayCompressor(this, messageArray, rawHistory);
}
handleStream(response, stream, responseProps) {
const { uuid = uuidv4(), sources = [] } = responseProps;
return new Promise(async (resolve) => {
let fullText = "";
// Establish listener to early-abort a streaming response
// in case things go sideways or the user does not like the response.
// We preserve the generated text but continue as if chat was completed
// to preserve previously generated content.
const handleAbort = () => clientAbortedHandler(resolve, fullText);
response.on("close", handleAbort);
for await (const chunk of stream) {
2024-03-27 01:20:12 +01:00
let chunkText;
try {
// Due to content sensitivity we cannot always get the function .text();
// https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/configure-safety-attributes#gemini-TASK-samples-nodejs
// and it is not possible to unblock or disable this safety protocol without being allowlisted by Google.
chunkText = chunk.text();
} catch (e) {
chunkText = e.message;
writeResponseChunk(response, {
uuid,
sources: [],
type: "abort",
textResponse: null,
close: true,
error: e.message,
});
resolve(e.message);
return;
}
fullText += chunkText;
writeResponseChunk(response, {
uuid,
sources: [],
type: "textResponseChunk",
textResponse: chunk.text(),
close: false,
error: false,
});
}
writeResponseChunk(response, {
uuid,
sources,
type: "textResponseChunk",
textResponse: "",
close: true,
error: false,
});
response.removeListener("close", handleAbort);
resolve(fullText);
});
}
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
async embedTextInput(textInput) {
return await this.embedder.embedTextInput(textInput);
}
async embedChunks(textChunks = []) {
return await this.embedder.embedChunks(textChunks);
}
}
module.exports = {
GeminiLLM,
};