anything-llm/server/utils/helpers/updateENV.js

814 lines
20 KiB
JavaScript
Raw Normal View History

const KEY_MAPPING = {
LLMProvider: {
envKey: "LLM_PROVIDER",
checks: [isNotEmpty, supportedLLM],
},
// OpenAI Settings
OpenAiKey: {
envKey: "OPEN_AI_KEY",
checks: [isNotEmpty, validOpenAIKey],
},
OpenAiModelPref: {
envKey: "OPEN_MODEL_PREF",
checks: [isNotEmpty],
},
// Azure OpenAI Settings
AzureOpenAiEndpoint: {
envKey: "AZURE_OPENAI_ENDPOINT",
checks: [isNotEmpty, validAzureURL],
},
AzureOpenAiTokenLimit: {
envKey: "AZURE_OPENAI_TOKEN_LIMIT",
checks: [validOpenAiTokenLimit],
},
AzureOpenAiKey: {
envKey: "AZURE_OPENAI_KEY",
checks: [isNotEmpty],
},
AzureOpenAiModelPref: {
envKey: "OPEN_MODEL_PREF",
checks: [isNotEmpty],
},
AzureOpenAiEmbeddingModelPref: {
envKey: "EMBEDDING_MODEL_PREF",
checks: [isNotEmpty],
},
// Anthropic Settings
AnthropicApiKey: {
envKey: "ANTHROPIC_API_KEY",
checks: [isNotEmpty, validAnthropicApiKey],
},
AnthropicModelPref: {
envKey: "ANTHROPIC_MODEL_PREF",
checks: [isNotEmpty, validAnthropicModel],
},
GeminiLLMApiKey: {
envKey: "GEMINI_API_KEY",
checks: [isNotEmpty],
},
GeminiLLMModelPref: {
envKey: "GEMINI_LLM_MODEL_PREF",
checks: [isNotEmpty, validGeminiModel],
},
GeminiSafetySetting: {
envKey: "GEMINI_SAFETY_SETTING",
checks: [validGeminiSafetySetting],
},
Using OpenAI API locally (#335) * Using OpenAI API locally * Infinite prompt input and compression implementation (#332) * WIP on continuous prompt window summary * wip * Move chat out of VDB simplify chat interface normalize LLM model interface have compression abstraction Cleanup compressor TODO: Anthropic stuff * Implement compression for Anythropic Fix lancedb sources * cleanup vectorDBs and check that lance, chroma, and pinecone are returning valid metadata sources * Resolve Weaviate citation sources not working with schema * comment cleanup * disable import on hosted instances (#339) * disable import on hosted instances * Update UI on disabled import/export --------- Co-authored-by: timothycarambat <rambat1010@gmail.com> * Add support for gpt-4-turbo 128K model (#340) resolves #336 Add support for gpt-4-turbo 128K model * 315 show citations based on relevancy score (#316) * settings for similarity score threshold and prisma schema updated * prisma schema migration for adding similarityScore setting * WIP * Min score default change * added similarityThreshold checking for all vectordb providers * linting --------- Co-authored-by: shatfield4 <seanhatfield5@gmail.com> * rename localai to lmstudio * forgot files that were renamed * normalize model interface * add model and context window limits * update LMStudio tagline * Fully working LMStudio integration --------- Co-authored-by: Francisco Bischoff <984592+franzbischoff@users.noreply.github.com> Co-authored-by: Timothy Carambat <rambat1010@gmail.com> Co-authored-by: Sean Hatfield <seanhatfield5@gmail.com>
2023-11-09 21:33:21 +01:00
// LMStudio Settings
LMStudioBasePath: {
envKey: "LMSTUDIO_BASE_PATH",
checks: [isNotEmpty, validLLMExternalBasePath, validDockerizedUrl],
Using OpenAI API locally (#335) * Using OpenAI API locally * Infinite prompt input and compression implementation (#332) * WIP on continuous prompt window summary * wip * Move chat out of VDB simplify chat interface normalize LLM model interface have compression abstraction Cleanup compressor TODO: Anthropic stuff * Implement compression for Anythropic Fix lancedb sources * cleanup vectorDBs and check that lance, chroma, and pinecone are returning valid metadata sources * Resolve Weaviate citation sources not working with schema * comment cleanup * disable import on hosted instances (#339) * disable import on hosted instances * Update UI on disabled import/export --------- Co-authored-by: timothycarambat <rambat1010@gmail.com> * Add support for gpt-4-turbo 128K model (#340) resolves #336 Add support for gpt-4-turbo 128K model * 315 show citations based on relevancy score (#316) * settings for similarity score threshold and prisma schema updated * prisma schema migration for adding similarityScore setting * WIP * Min score default change * added similarityThreshold checking for all vectordb providers * linting --------- Co-authored-by: shatfield4 <seanhatfield5@gmail.com> * rename localai to lmstudio * forgot files that were renamed * normalize model interface * add model and context window limits * update LMStudio tagline * Fully working LMStudio integration --------- Co-authored-by: Francisco Bischoff <984592+franzbischoff@users.noreply.github.com> Co-authored-by: Timothy Carambat <rambat1010@gmail.com> Co-authored-by: Sean Hatfield <seanhatfield5@gmail.com>
2023-11-09 21:33:21 +01:00
},
LMStudioModelPref: {
envKey: "LMSTUDIO_MODEL_PREF",
checks: [],
},
Using OpenAI API locally (#335) * Using OpenAI API locally * Infinite prompt input and compression implementation (#332) * WIP on continuous prompt window summary * wip * Move chat out of VDB simplify chat interface normalize LLM model interface have compression abstraction Cleanup compressor TODO: Anthropic stuff * Implement compression for Anythropic Fix lancedb sources * cleanup vectorDBs and check that lance, chroma, and pinecone are returning valid metadata sources * Resolve Weaviate citation sources not working with schema * comment cleanup * disable import on hosted instances (#339) * disable import on hosted instances * Update UI on disabled import/export --------- Co-authored-by: timothycarambat <rambat1010@gmail.com> * Add support for gpt-4-turbo 128K model (#340) resolves #336 Add support for gpt-4-turbo 128K model * 315 show citations based on relevancy score (#316) * settings for similarity score threshold and prisma schema updated * prisma schema migration for adding similarityScore setting * WIP * Min score default change * added similarityThreshold checking for all vectordb providers * linting --------- Co-authored-by: shatfield4 <seanhatfield5@gmail.com> * rename localai to lmstudio * forgot files that were renamed * normalize model interface * add model and context window limits * update LMStudio tagline * Fully working LMStudio integration --------- Co-authored-by: Francisco Bischoff <984592+franzbischoff@users.noreply.github.com> Co-authored-by: Timothy Carambat <rambat1010@gmail.com> Co-authored-by: Sean Hatfield <seanhatfield5@gmail.com>
2023-11-09 21:33:21 +01:00
LMStudioTokenLimit: {
envKey: "LMSTUDIO_MODEL_TOKEN_LIMIT",
checks: [nonZero],
},
// LocalAI Settings
LocalAiBasePath: {
envKey: "LOCAL_AI_BASE_PATH",
checks: [isNotEmpty, validLLMExternalBasePath, validDockerizedUrl],
},
LocalAiModelPref: {
envKey: "LOCAL_AI_MODEL_PREF",
checks: [],
},
LocalAiTokenLimit: {
envKey: "LOCAL_AI_MODEL_TOKEN_LIMIT",
checks: [nonZero],
},
LocalAiApiKey: {
envKey: "LOCAL_AI_API_KEY",
checks: [],
},
OllamaLLMBasePath: {
envKey: "OLLAMA_BASE_PATH",
checks: [isNotEmpty, validOllamaLLMBasePath, validDockerizedUrl],
},
OllamaLLMModelPref: {
envKey: "OLLAMA_MODEL_PREF",
checks: [],
},
OllamaLLMTokenLimit: {
envKey: "OLLAMA_MODEL_TOKEN_LIMIT",
checks: [nonZero],
},
// Mistral AI API Settings
MistralApiKey: {
envKey: "MISTRAL_API_KEY",
checks: [isNotEmpty],
},
MistralModelPref: {
envKey: "MISTRAL_MODEL_PREF",
checks: [isNotEmpty],
},
// Native LLM Settings
NativeLLMModelPref: {
envKey: "NATIVE_LLM_MODEL_PREF",
checks: [isDownloadedModel],
},
NativeLLMTokenLimit: {
envKey: "NATIVE_LLM_MODEL_TOKEN_LIMIT",
checks: [nonZero],
},
// Hugging Face LLM Inference Settings
HuggingFaceLLMEndpoint: {
envKey: "HUGGING_FACE_LLM_ENDPOINT",
checks: [isNotEmpty, isValidURL, validHuggingFaceEndpoint],
},
HuggingFaceLLMAccessToken: {
envKey: "HUGGING_FACE_LLM_API_KEY",
checks: [isNotEmpty],
},
HuggingFaceLLMTokenLimit: {
envKey: "HUGGING_FACE_LLM_TOKEN_LIMIT",
checks: [nonZero],
},
// KoboldCPP Settings
KoboldCPPBasePath: {
envKey: "KOBOLD_CPP_BASE_PATH",
checks: [isNotEmpty, isValidURL],
},
KoboldCPPModelPref: {
envKey: "KOBOLD_CPP_MODEL_PREF",
checks: [isNotEmpty],
},
KoboldCPPTokenLimit: {
envKey: "KOBOLD_CPP_MODEL_TOKEN_LIMIT",
checks: [nonZero],
},
// Text Generation Web UI Settings
TextGenWebUIBasePath: {
envKey: "TEXT_GEN_WEB_UI_BASE_PATH",
checks: [isValidURL],
},
TextGenWebUITokenLimit: {
envKey: "TEXT_GEN_WEB_UI_MODEL_TOKEN_LIMIT",
checks: [nonZero],
},
TextGenWebUIAPIKey: {
envKey: "TEXT_GEN_WEB_UI_API_KEY",
checks: [],
},
// LiteLLM Settings
LiteLLMModelPref: {
envKey: "LITE_LLM_MODEL_PREF",
checks: [isNotEmpty],
},
LiteLLMTokenLimit: {
envKey: "LITE_LLM_MODEL_TOKEN_LIMIT",
checks: [nonZero],
},
LiteLLMBasePath: {
envKey: "LITE_LLM_BASE_PATH",
checks: [isValidURL],
},
LiteLLMApiKey: {
envKey: "LITE_LLM_API_KEY",
checks: [],
},
// Generic OpenAI InferenceSettings
GenericOpenAiBasePath: {
envKey: "GENERIC_OPEN_AI_BASE_PATH",
checks: [isValidURL],
},
GenericOpenAiModelPref: {
envKey: "GENERIC_OPEN_AI_MODEL_PREF",
checks: [isNotEmpty],
},
GenericOpenAiTokenLimit: {
envKey: "GENERIC_OPEN_AI_MODEL_TOKEN_LIMIT",
checks: [nonZero],
},
GenericOpenAiKey: {
envKey: "GENERIC_OPEN_AI_API_KEY",
checks: [],
},
GenericOpenAiMaxTokens: {
envKey: "GENERIC_OPEN_AI_MAX_TOKENS",
checks: [nonZero],
},
EmbeddingEngine: {
envKey: "EMBEDDING_ENGINE",
checks: [supportedEmbeddingModel],
},
EmbeddingBasePath: {
envKey: "EMBEDDING_BASE_PATH",
checks: [isNotEmpty, validDockerizedUrl],
},
EmbeddingModelPref: {
envKey: "EMBEDDING_MODEL_PREF",
checks: [isNotEmpty],
},
EmbeddingModelMaxChunkLength: {
envKey: "EMBEDDING_MODEL_MAX_CHUNK_LENGTH",
checks: [nonZero],
},
// Vector Database Selection Settings
VectorDB: {
envKey: "VECTOR_DB",
checks: [isNotEmpty, supportedVectorDB],
},
// Chroma Options
ChromaEndpoint: {
envKey: "CHROMA_ENDPOINT",
checks: [isValidURL, validChromaURL, validDockerizedUrl],
},
ChromaApiHeader: {
envKey: "CHROMA_API_HEADER",
checks: [],
},
ChromaApiKey: {
envKey: "CHROMA_API_KEY",
checks: [],
},
// Weaviate Options
WeaviateEndpoint: {
envKey: "WEAVIATE_ENDPOINT",
checks: [isValidURL, validDockerizedUrl],
},
WeaviateApiKey: {
envKey: "WEAVIATE_API_KEY",
checks: [],
},
// QDrant Options
QdrantEndpoint: {
envKey: "QDRANT_ENDPOINT",
checks: [isValidURL, validDockerizedUrl],
},
QdrantApiKey: {
envKey: "QDRANT_API_KEY",
checks: [],
},
PineConeKey: {
envKey: "PINECONE_API_KEY",
checks: [],
},
PineConeIndex: {
envKey: "PINECONE_INDEX",
checks: [],
},
// Milvus Options
MilvusAddress: {
envKey: "MILVUS_ADDRESS",
checks: [isValidURL, validDockerizedUrl],
},
MilvusUsername: {
envKey: "MILVUS_USERNAME",
checks: [isNotEmpty],
},
MilvusPassword: {
envKey: "MILVUS_PASSWORD",
checks: [isNotEmpty],
},
// Zilliz Cloud Options
ZillizEndpoint: {
envKey: "ZILLIZ_ENDPOINT",
checks: [isValidURL],
},
ZillizApiToken: {
envKey: "ZILLIZ_API_TOKEN",
checks: [isNotEmpty],
},
// Astra DB Options
AstraDBApplicationToken: {
envKey: "ASTRA_DB_APPLICATION_TOKEN",
checks: [isNotEmpty],
},
AstraDBEndpoint: {
envKey: "ASTRA_DB_ENDPOINT",
checks: [isNotEmpty],
},
// Together Ai Options
TogetherAiApiKey: {
envKey: "TOGETHER_AI_API_KEY",
checks: [isNotEmpty],
},
TogetherAiModelPref: {
envKey: "TOGETHER_AI_MODEL_PREF",
checks: [isNotEmpty],
},
// Perplexity Options
PerplexityApiKey: {
envKey: "PERPLEXITY_API_KEY",
checks: [isNotEmpty],
},
PerplexityModelPref: {
envKey: "PERPLEXITY_MODEL_PREF",
checks: [isNotEmpty],
},
// OpenRouter Options
OpenRouterApiKey: {
envKey: "OPENROUTER_API_KEY",
checks: [isNotEmpty],
},
OpenRouterModelPref: {
envKey: "OPENROUTER_MODEL_PREF",
checks: [isNotEmpty],
},
// Groq Options
GroqApiKey: {
envKey: "GROQ_API_KEY",
checks: [isNotEmpty],
},
GroqModelPref: {
envKey: "GROQ_MODEL_PREF",
checks: [isNotEmpty],
},
// Cohere Options
CohereApiKey: {
envKey: "COHERE_API_KEY",
checks: [isNotEmpty],
},
CohereModelPref: {
envKey: "COHERE_MODEL_PREF",
checks: [isNotEmpty],
},
// VoyageAi Options
VoyageAiApiKey: {
envKey: "VOYAGEAI_API_KEY",
checks: [isNotEmpty],
},
// Whisper (transcription) providers
WhisperProvider: {
envKey: "WHISPER_PROVIDER",
checks: [isNotEmpty, supportedTranscriptionProvider],
postUpdate: [],
},
2024-05-18 06:31:29 +02:00
WhisperModelPref: {
envKey: "WHISPER_MODEL_PREF",
checks: [validLocalWhisper],
postUpdate: [],
},
// System Settings
AuthToken: {
envKey: "AUTH_TOKEN",
checks: [requiresForceMode, noRestrictedChars],
},
JWTSecret: {
envKey: "JWT_SECRET",
checks: [requiresForceMode],
},
DisableTelemetry: {
envKey: "DISABLE_TELEMETRY",
checks: [],
},
// Agent Integration ENVs
AgentGoogleSearchEngineId: {
envKey: "AGENT_GSE_CTX",
checks: [],
},
AgentGoogleSearchEngineKey: {
envKey: "AGENT_GSE_KEY",
checks: [],
},
AgentSerperApiKey: {
envKey: "AGENT_SERPER_DEV_KEY",
checks: [],
},
AgentBingSearchApiKey: {
envKey: "AGENT_BING_SEARCH_API_KEY",
checks: [],
},
AgentSerplyApiKey: {
envKey: "AGENT_SERPLY_API_KEY",
checks: [],
},
AgentSearXNGApiUrl: {
envKey: "AGENT_SEARXNG_API_URL",
checks: [],
},
// TTS/STT Integration ENVS
TextToSpeechProvider: {
envKey: "TTS_PROVIDER",
checks: [supportedTTSProvider],
},
// TTS OpenAI
TTSOpenAIKey: {
envKey: "TTS_OPEN_AI_KEY",
checks: [validOpenAIKey],
},
TTSOpenAIVoiceModel: {
envKey: "TTS_OPEN_AI_VOICE_MODEL",
checks: [],
},
// TTS ElevenLabs
TTSElevenLabsKey: {
envKey: "TTS_ELEVEN_LABS_KEY",
checks: [isNotEmpty],
},
TTSElevenLabsVoiceModel: {
envKey: "TTS_ELEVEN_LABS_VOICE_MODEL",
checks: [],
},
};
function isNotEmpty(input = "") {
return !input || input.length === 0 ? "Value cannot be empty" : null;
}
Using OpenAI API locally (#335) * Using OpenAI API locally * Infinite prompt input and compression implementation (#332) * WIP on continuous prompt window summary * wip * Move chat out of VDB simplify chat interface normalize LLM model interface have compression abstraction Cleanup compressor TODO: Anthropic stuff * Implement compression for Anythropic Fix lancedb sources * cleanup vectorDBs and check that lance, chroma, and pinecone are returning valid metadata sources * Resolve Weaviate citation sources not working with schema * comment cleanup * disable import on hosted instances (#339) * disable import on hosted instances * Update UI on disabled import/export --------- Co-authored-by: timothycarambat <rambat1010@gmail.com> * Add support for gpt-4-turbo 128K model (#340) resolves #336 Add support for gpt-4-turbo 128K model * 315 show citations based on relevancy score (#316) * settings for similarity score threshold and prisma schema updated * prisma schema migration for adding similarityScore setting * WIP * Min score default change * added similarityThreshold checking for all vectordb providers * linting --------- Co-authored-by: shatfield4 <seanhatfield5@gmail.com> * rename localai to lmstudio * forgot files that were renamed * normalize model interface * add model and context window limits * update LMStudio tagline * Fully working LMStudio integration --------- Co-authored-by: Francisco Bischoff <984592+franzbischoff@users.noreply.github.com> Co-authored-by: Timothy Carambat <rambat1010@gmail.com> Co-authored-by: Sean Hatfield <seanhatfield5@gmail.com>
2023-11-09 21:33:21 +01:00
function nonZero(input = "") {
if (isNaN(Number(input))) return "Value must be a number";
return Number(input) <= 0 ? "Value must be greater than zero" : null;
}
function isValidURL(input = "") {
try {
new URL(input);
return null;
} catch (e) {
return "URL is not a valid URL.";
}
}
function validOpenAIKey(input = "") {
return input.startsWith("sk-") ? null : "OpenAI Key must start with sk-";
}
function validAnthropicApiKey(input = "") {
return input.startsWith("sk-ant-")
? null
: "Anthropic Key must start with sk-ant-";
}
function validLLMExternalBasePath(input = "") {
Using OpenAI API locally (#335) * Using OpenAI API locally * Infinite prompt input and compression implementation (#332) * WIP on continuous prompt window summary * wip * Move chat out of VDB simplify chat interface normalize LLM model interface have compression abstraction Cleanup compressor TODO: Anthropic stuff * Implement compression for Anythropic Fix lancedb sources * cleanup vectorDBs and check that lance, chroma, and pinecone are returning valid metadata sources * Resolve Weaviate citation sources not working with schema * comment cleanup * disable import on hosted instances (#339) * disable import on hosted instances * Update UI on disabled import/export --------- Co-authored-by: timothycarambat <rambat1010@gmail.com> * Add support for gpt-4-turbo 128K model (#340) resolves #336 Add support for gpt-4-turbo 128K model * 315 show citations based on relevancy score (#316) * settings for similarity score threshold and prisma schema updated * prisma schema migration for adding similarityScore setting * WIP * Min score default change * added similarityThreshold checking for all vectordb providers * linting --------- Co-authored-by: shatfield4 <seanhatfield5@gmail.com> * rename localai to lmstudio * forgot files that were renamed * normalize model interface * add model and context window limits * update LMStudio tagline * Fully working LMStudio integration --------- Co-authored-by: Francisco Bischoff <984592+franzbischoff@users.noreply.github.com> Co-authored-by: Timothy Carambat <rambat1010@gmail.com> Co-authored-by: Sean Hatfield <seanhatfield5@gmail.com>
2023-11-09 21:33:21 +01:00
try {
new URL(input);
if (!input.includes("v1")) return "URL must include /v1";
if (input.split("").slice(-1)?.[0] === "/")
return "URL cannot end with a slash";
return null;
} catch {
return "Not a valid URL";
}
}
function validOllamaLLMBasePath(input = "") {
try {
new URL(input);
if (input.split("").slice(-1)?.[0] === "/")
return "URL cannot end with a slash";
return null;
} catch {
return "Not a valid URL";
}
}
function supportedTTSProvider(input = "") {
const validSelection = ["native", "openai", "elevenlabs"].includes(input);
return validSelection ? null : `${input} is not a valid TTS provider.`;
}
2024-05-18 06:31:29 +02:00
function validLocalWhisper(input = "") {
const validSelection = [
"Xenova/whisper-small",
"Xenova/whisper-large",
].includes(input);
return validSelection
? null
: `${input} is not a valid Whisper model selection.`;
}
function supportedLLM(input = "") {
const validSelection = [
"openai",
"azure",
"anthropic",
"gemini",
"lmstudio",
"localai",
"ollama",
"native",
"togetherai",
"mistral",
"huggingface",
"perplexity",
"openrouter",
"groq",
"koboldcpp",
"textgenwebui",
"cohere",
"litellm",
"generic-openai",
].includes(input);
return validSelection ? null : `${input} is not a valid LLM provider.`;
}
function supportedTranscriptionProvider(input = "") {
const validSelection = ["openai", "local"].includes(input);
return validSelection
? null
: `${input} is not a valid transcription model provider.`;
}
function validGeminiModel(input = "") {
const validModels = [
"gemini-pro",
"gemini-1.0-pro",
"gemini-1.5-pro-latest",
"gemini-1.5-flash-latest",
];
return validModels.includes(input)
? null
: `Invalid Model type. Must be one of ${validModels.join(", ")}.`;
}
function validGeminiSafetySetting(input = "") {
const validModes = [
"BLOCK_NONE",
"BLOCK_ONLY_HIGH",
"BLOCK_MEDIUM_AND_ABOVE",
"BLOCK_LOW_AND_ABOVE",
];
return validModes.includes(input)
? null
: `Invalid Safety setting. Must be one of ${validModes.join(", ")}.`;
}
function validAnthropicModel(input = "") {
const validModels = [
"claude-instant-1.2",
"claude-2.0",
"claude-2.1",
"claude-3-opus-20240229",
"claude-3-sonnet-20240229",
"claude-3-haiku-20240307",
"claude-3-5-sonnet-20240620",
];
return validModels.includes(input)
? null
: `Invalid Model type. Must be one of ${validModels.join(", ")}.`;
}
function supportedEmbeddingModel(input = "") {
const supported = [
"openai",
"azure",
"localai",
"native",
"ollama",
"lmstudio",
"cohere",
"voyageai",
"litellm",
];
return supported.includes(input)
? null
: `Invalid Embedding model type. Must be one of ${supported.join(", ")}.`;
}
function supportedVectorDB(input = "") {
const supported = [
"chroma",
"pinecone",
"lancedb",
"weaviate",
"qdrant",
"milvus",
"zilliz",
"astra",
];
return supported.includes(input)
? null
: `Invalid VectorDB type. Must be one of ${supported.join(", ")}.`;
}
function validChromaURL(input = "") {
return input.slice(-1) === "/"
? `Chroma Instance URL should not end in a trailing slash.`
: null;
}
function validAzureURL(input = "") {
try {
new URL(input);
if (!input.includes("openai.azure.com") && !input.includes("microsoft.com"))
return "Valid Azure endpoints must contain openai.azure.com OR microsoft.com";
return null;
} catch {
return "Not a valid URL";
}
}
function validOpenAiTokenLimit(input = "") {
const tokenLimit = Number(input);
if (isNaN(tokenLimit)) return "Token limit is not a number";
if (![4_096, 16_384, 8_192, 32_768, 128_000].includes(tokenLimit))
return "Invalid OpenAI token limit.";
return null;
}
function requiresForceMode(_, forceModeEnabled = false) {
return forceModeEnabled === true ? null : "Cannot set this setting.";
}
function isDownloadedModel(input = "") {
const fs = require("fs");
const path = require("path");
const storageDir = path.resolve(
process.env.STORAGE_DIR
? path.resolve(process.env.STORAGE_DIR, "models", "downloaded")
: path.resolve(__dirname, `../../storage/models/downloaded`)
);
if (!fs.existsSync(storageDir)) return false;
const files = fs
.readdirSync(storageDir)
.filter((file) => file.includes(".gguf"));
return files.includes(input);
}
async function validDockerizedUrl(input = "") {
if (process.env.ANYTHING_LLM_RUNTIME !== "docker") return null;
try {
const { isPortInUse, getLocalHosts } = require("./portAvailabilityChecker");
const localInterfaces = getLocalHosts();
const url = new URL(input);
const hostname = url.hostname.toLowerCase();
const port = parseInt(url.port, 10);
// If not a loopback, skip this check.
if (!localInterfaces.includes(hostname)) return null;
if (isNaN(port)) return "Invalid URL: Port is not specified or invalid";
const isPortAvailableFromDocker = await isPortInUse(port, hostname);
if (isPortAvailableFromDocker)
return "Port is not running a reachable service on loopback address from inside the AnythingLLM container. Please use host.docker.internal (for linux use 172.17.0.1), a real machine ip, or domain to connect to your service.";
} catch (error) {
console.error(error.message);
return "An error occurred while validating the URL";
}
return null;
}
function validHuggingFaceEndpoint(input = "") {
return input.slice(-6) !== ".cloud"
? `Your HF Endpoint should end in ".cloud"`
: null;
}
function noRestrictedChars(input = "") {
const regExp = new RegExp(/^[a-zA-Z0-9_\-!@$%^&*();]+$/);
return !regExp.test(input)
? `Your password has restricted characters in it. Allowed symbols are _,-,!,@,$,%,^,&,*,(,),;`
: null;
}
// This will force update .env variables which for any which reason were not able to be parsed or
// read from an ENV file as this seems to be a complicating step for many so allowing people to write
// to the process will at least alleviate that issue. It does not perform comprehensive validity checks or sanity checks
// and is simply for debugging when the .env not found issue many come across.
async function updateENV(newENVs = {}, force = false, userId = null) {
let error = "";
const validKeys = Object.keys(KEY_MAPPING);
const ENV_KEYS = Object.keys(newENVs).filter(
(key) => validKeys.includes(key) && !newENVs[key].includes("******") // strip out answers where the value is all asterisks
);
const newValues = {};
for (const key of ENV_KEYS) {
const { envKey, checks, postUpdate = [] } = KEY_MAPPING[key];
const prevValue = process.env[envKey];
const nextValue = newENVs[key];
const errors = await executeValidationChecks(checks, nextValue, force);
if (errors.length > 0) {
error += errors.join("\n");
break;
}
newValues[key] = nextValue;
process.env[envKey] = nextValue;
for (const postUpdateFunc of postUpdate)
await postUpdateFunc(key, prevValue, nextValue);
}
await logChangesToEventLog(newValues, userId);
return { newValues, error: error?.length > 0 ? error : false };
}
async function executeValidationChecks(checks, value, force) {
const results = await Promise.all(
checks.map((validator) => validator(value, force))
);
return results.filter((err) => typeof err === "string");
}
async function logChangesToEventLog(newValues = {}, userId = null) {
const { EventLogs } = require("../../models/eventLogs");
const eventMapping = {
LLMProvider: "update_llm_provider",
EmbeddingEngine: "update_embedding_engine",
VectorDB: "update_vector_db",
};
for (const [key, eventName] of Object.entries(eventMapping)) {
if (!newValues.hasOwnProperty(key)) continue;
await EventLogs.logEvent(eventName, {}, userId);
}
return;
}
async function dumpENV() {
const fs = require("fs");
const path = require("path");
const frozenEnvs = {};
const protectedKeys = [
...Object.values(KEY_MAPPING).map((values) => values.envKey),
"STORAGE_DIR",
"SERVER_PORT",
// Password Schema Keys if present.
"PASSWORDMINCHAR",
"PASSWORDMAXCHAR",
"PASSWORDLOWERCASE",
"PASSWORDUPPERCASE",
"PASSWORDNUMERIC",
"PASSWORDSYMBOL",
"PASSWORDREQUIREMENTS",
// HTTPS SETUP KEYS
"ENABLE_HTTPS",
"HTTPS_CERT_PATH",
"HTTPS_KEY_PATH",
// DISABLED TELEMETRY
"DISABLE_TELEMETRY",
// Agent Integrations
// Search engine integrations
"AGENT_GSE_CTX",
"AGENT_GSE_KEY",
"AGENT_SERPER_DEV_KEY",
"AGENT_BING_SEARCH_API_KEY",
2024-06-11 00:22:32 +02:00
"AGENT_SERPLY_API_KEY",
];
// Simple sanitization of each value to prevent ENV injection via newline or quote escaping.
function sanitizeValue(value) {
const offendingChars =
/[\n\r\t\v\f\u0085\u00a0\u1680\u180e\u2000-\u200a\u2028\u2029\u202f\u205f\u3000"'`#]/;
const firstOffendingCharIndex = value.search(offendingChars);
if (firstOffendingCharIndex === -1) return value;
return value.substring(0, firstOffendingCharIndex);
}
for (const key of protectedKeys) {
const envValue = process.env?.[key] || null;
if (!envValue) continue;
frozenEnvs[key] = process.env?.[key] || null;
}
var envResult = `# Auto-dump ENV from system call on ${new Date().toTimeString()}\n`;
envResult += Object.entries(frozenEnvs)
.map(([key, value]) => `${key}='${sanitizeValue(value)}'`)
.join("\n");
const envPath = path.join(__dirname, "../../.env");
fs.writeFileSync(envPath, envResult, { encoding: "utf8", flag: "w" });
return true;
}
module.exports = {
dumpENV,
updateENV,
};